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Broad histogram relation for the bond number and its applications
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We discuss Monte Carlo methods based on the cligtaph representation for spin models. We derive a
rigorous broad histogram relatigBHR) for the bond number; a counterpart for the energy was derived by
Oliveira previously. A Monte Carlo dynamics based on the number of potential moves for the bond number is
proposed. We show the efficiency of the BHR for the bond number in calculating the density of states and other
physical quantities.
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[. INTRODUCTION for a single-spin-flip process, whemd is the number of
spins. The energy DOS is related to the number of potential
The development of new algorithms for the Monte Carlomoves as
simulation is important to overcome the problem of slow
dynamics. We may classify such attempts into two catego- 9(E) (N(SE—E"))e=g(E’) (N(S'.E'—E))e/,
ries. The first category is the extended ensemble method; one D

uses an ensemble different from the ordinary canonical engpere(. ..} denotes the microcanonical average with fixed
semble with a fixed temperature. The multicanonical metho This relation is shown to be valid on general groufid§

1,2], the simulated temperir[@], the exchange Monte Carlo ; :

Enet]hod[4] the broad hFi)stogr;m methds] %he flat histo- ?nd h)efreaf':}er we call Eql) as the brOﬁd hlstokg)]ramfrelatlon |
X _ ' : BHR) for the energy. One may use the number of potentia

gram method6,7], and the Wang-Landau algorithf] are ovesN(S,E—E’") for the probability of updating states.

examples of the first category. The second category includ hile th inal : A
the cluster algorithm; one flips a large number of spins in a//Nile the original dynamic5] was criticized to be not en-
correlated cluster at a time instead of a single-spin fliplirély correct[6,15)], a refined dynamics is employed in the

which helps the relaxation time decrease drastically. Ex{lat histogram method7]. Alternatively, one may employ
amples of the second category are the Swendsen-Wang algether dynamics which has no relation M(S,E—E’), but
rithm [9] and the Wolff algorithn{10]. Recently Tomita and Ed. (1) is used when calculating the energy DOIS,17. It
Okabe[11] proposed an effective cluster algorithm, which iswas stressed16,17 that N(S,E—~E’) is a macroscopic
called the probability-changing cluster algorithm, of tuning quantity, which is the advantage of using the number of po-
the critical point automatically. tential moves. We do not have to care about the relative

The combination of the approaches of two categories is aumber of visits for different energy levels It is contrary
challenging problem to explore an efficient algorithm. Jankeo the case of the multicanonical methidd2] or the Wang-
and Kappler[12] proposed a trial to combine the multica- Landau method8]. The only crucial point is the uniformity
nonical method and the cluster algorithm; their method isof visits within the same energy levgl6.
called the multibondic ensemble method. Quite recently, It is quite interesting to ask whether there is a relation
Yamaguchi and Kawashimid 3] have improved the multi- similar to the BHR, Eq.(1), for the bond number. In this
bondic ensemble method; they have also shown that thpaper, using the clustégraph representation, we derive the
combination of the Wang-Landau algorithm and the im-BHR for the bond number. We propose a dynamics based on
proved multibondic ensemble method yields much better stathe number of potential moves for the bond number. Using
tistics compared to the original multibondic ensemblethe DOS for the bond number thus obtained, we calculate the
method by Janke and KapplgtZ2]. specific heat for model spin systems. We also employ other

One calculates the energy density of stdi2®S) g(E) in  dynamics, that is, the multibondic ensemble metfi#®] and
the multicanonical method1,2] and the Wang-Landau its improvemen{13], and calculate the bond-number DOS,
method|[8]; the energy histogranil (E) is checked during based on the BHR for the bond number. Comparing the ef-
the Monte Carlo process. In contrast, the DOS for bond numficiency of several methods, we show that the calculation of
ber n,, Q(ny), is calculated in the multibondic ensemble the bond-number DOS through the BHR gives much better
method[12] or the improved multibondic ensemble method statistics compared to the direct calculation of the DOS.
by Yamaguchi and Kawashinja3]; the histogram for bond The rest of the paper is organized as follows. In Sec. I,
number,H(ny), is checked in the Monte Carlo process. we briefly review the clustetgraph representation for the

In proposing the broad histogram method, Olivedtaal.  Q-state Potts model. In Sec. lll, we derive the BHR for the
[5] paid attention to the number of potential moves, or thebond number. A dynamics based on the number of potential
number of the possible energy chand&S,E—E’), for a  moves for the bond number is discussed in Sec. IV. In Sec. V,

given stateS. The total number of moves is calculating the accuracy of the specific heat for the two-
dimensional2D) Ising model, we compare the efficiency of
> N(SE—E+AE)=N several methods. The summary and discussions are given in
AE ’ Sec. VI.
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Il. CLUSTER FORMALISM Then, the canonical average of a quanfitys calculated

We briefly review the clusteftgraph formalism for the by
Q-state Potts model. We are concerned with the Hamiltonian
2 (A)n, 2Ny Vo(Np, T)

Np

H= —J% 850 0i={L,... Q}, (A)r= 70T ; &)

whereJ is the exchange coupling constant and the summawhere (A),, is the microcanonical average with the fixed

tion is taken over the nearest-neighbor péir$). Fromnow g numben,, for the quantityA defined as
on, we represent the energy in unitsJpand the Boltzmann

constant is set to be 1.

The partition function for a given temperatufieis ex- > > A(S,G)A(S,G)
pressed as (A, = {G[ny(G)=np} 'S 3
o Q(np) '
Z(T)EES WO(S):; 9(E)Wo(E(S),T) Thus, if we obtainQ)(n,) and(- - '>nb during the simulation
process, we can calculate the canonical average of any quan-

with the Boltzmann weight of stat® having the energ¥, tity at any temperature.

We should note that for the calculation of the enelgyyt

_ — A—E(S)IT
Wo(S)=Wo(E(S), T)=¢ ’ is convenient to use the relation

and the energy DOS, UT

d e
aB= S 1 <E>T=Tzﬁan(T)=—em—_l (Np)7- 4
{SES-E)

) ) Similarly, the specific heat per one siteis given by
With the framework of the dual algorithrii8,19, the

partition function is also expressed in the double summation T T

2
e e
over stateS and graphG as CNT?=— ?(ngfr(?) (g r—(np)9).
(e’ —1) e’ —1
(5

The above equation@) and (5) were derived by Janke and
whereA(S,G) is a function that takes the value one wign Kappler[12].
is compatible toG and takes the value zero otherwise. A
graph consists of a set of bonds. The weight for gr&h Ill. BHR FOR THE BOND NUMBER
Vo(G), is defined as

Z<T>=;; Vo(G) A(S,G),

The relation between the energy DOS and the number of
Vo(G)=V,(ny(G),T)=(e¥T—1)"(®) potential moves for energy, the BHR for the energy, was
. rigorously derived by Oliveira[14]. Here we follow a
for the Q-state Potts model, wherg,(G) is the number of  method similar to that used by Oliveira to derive the BHR
“‘active” bonds in G. This is nothing but the Fortuin- for the bond number. Instead of using the relation between
Kasteleyn representati(ir?O] for the Q'State Potts model. StateS, we consider the relation between graphs_

We say a pair i(j) is satisfied ifoj=0;, and unsatisfied  The number of potential moves from the graph with the
otherwise. Satisfied pairs become active with a probabilityhond numbem,, to the graph withn,+1, N(S,G,n,—n,
p=1-e T for givenT. +1), for fixedSis equal to that of the number of potential

By taking the summation ove with G with fixing the  moves from the graph withn,+1 to that with ny,
number of bonds,, the expression for the partition function N(sS G’ n,+1—n,). That is, the following relation is satis-

becomes fied:
Np
Z(T)= > Q(ny)Vo(ny,T), S N(SG,np—ny+1)
np=0 {GInp(G) =np}
whereNg is the total number of nearest-neighbor pairs in the
whole system. Here) (n,,) is the DOS for the bond number, = 2 N(S,G’,np+1—np). (6)
defined as the number of consistent combinations of graphs {G/|ny(G')=np+1}

and states such that the graph consista,pbonds,
Taking a summation over stat8sand using the definition of
Q(ny)= 2 2 A(S,G). the microcanonical average with the fixed bond nunthgr
{G|np(C)=ny} 'S Eq. (3), we rewrite Eq.(6) as
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Q(nb)<N(G,annb+l)>nb Q(nb) 1 np—1 1 NB
N :—,H [(1__)<5c-(G),c-(G)>nb=l+__| .
=Q(np+1) (N(G',np+1=np))n 1. (7) QY M=o QT Q »

This is the BHR for the bond number. It should be noted thaHere we have used the relation
N(G,n,—ny+1) is a possible number of bonds to add, and
related to the number of satisfied pairs for the given stte Q(0)=2Z(T—w)=QN.

It is interesting to check Eq13) for a special case. Th@
np(S)= 2, S0(9.0/(9) —1 limit of the Q-state Potts model is the bond percolation
() problem. If we substitut€=1 into Eq.(13), we obtain

N
()

which is the expected relation for the bond percolation prob-
lem.

by
N(G,nb—>nb+ l)=np(S)—nb

With use of the microcanonical average with fixed bond
number forn,, we have the relation

IV. FLAT HISTOGRAM METHOD FOR THE BOND

(N(G,np—np+1))n =(Np)n, —Np- (8) NUMBER
On the other hand, the possible number of bonds to delete, Let us consider the update process for the Monte Carlo
N(G’,n,+1—ny), is simply given byn,+ 1, that is, simulation. In the multibondic ensemble method, a graph is
updated by adding or deleting a bond for a satisfied pair of
(N(G',n,+ 1_>nb)>nb+1:nb+ 1. (9) sites[12]. The histogranH(n,) becomes flat if we use the

following rule. If there is a bond already on the chosen pair,

From the BHR for the bond number, E), we have we delete it with a probability

np—1 np—1 Q(nb)
Qny) 0+ St (NG D P M= D)= 6=+ 0y
Q0) =0 Q) =0 (N(G,I+1—=1))n 141
(100  On the other hand, if there is no bond and if the pair is
satisfied, we add a bond with a probability

(14

Then, substituting Eq¥8) and (9) into Eq. (10), we obtain
the bond-number DOS)(ny), as P(Ny—ny+1)=

M1 <np>nb:|_|
InQ(ny,)=InQ(0)+ |:20 |n(T

Q(np)
Q(Np11)+Q(Ng)

(15

) (11) Since the exact form of the bond-number DQ%n,) is not
known a priori, we renew()(ny) iteratively in the Monte
Carlo process by several ways2,13.
When calculating the bond-number DOS from the BHR for We may use the number of potential moves for the bond
the bond number, we only need the information(mra)nb, number{N(G, - - -))nb, for the probability of update. Insert-

the microcanonical average with fixexg, of the number of ing Egs.(7), (8), and(9) into Eqgs.(14) and(15), we get the
satisfied paira,. It is much simpler than the case of the probability to delete a bond,
BHR formulation for the energy DOS.

Moreover, in the computation af,, we can use an im- <”p>nb—1+ 1-n,

proved estimator. If a pair of sites,{) belong to the differ- P(np—n,—1)= W (16)
ent cluster, this pair is satisfied with a probability o@Q1/If P
a pair of sites belong to the same cluster, this pair~is alwaygnd the probability to add a bond,
satisfied. Then, we can employ an improved estimafoas _—
P(ny—np+1)= ——— 1
ﬁ(c;)=(1—i > 8 e (12) ey (Mp)a, +1 v
P Q/fF) "@a®@ " Q

respectively.

: Th | Mon rlo pr rei follows. Wi r
wherec;(G) represent a cluster that a siteelongs to. Only isr%tgastatz(st&r?az:o?\f?gz‘r:aet(ij;hesssns | oag aSrbitrer/tat

the information on graph- is needed. 'jD’y defihitic(lm,p>nb graphG consistent with it. We add or delete a bond of satis-
=(Np)n,- We employ the improved estimator in the whole fied pairs with the probability(16) or (17). After making
calculation below. Inserting Eq12) into Eq.(11), we have  such a process as many as the number of total peys.we
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300 i t t 0 . .
(b) 0 2

T
= FIG. 2. Specific heat per site of the 2D Ising model for 32
obtained by the cluster-flip flat histogram method.

single-spin-flip flat histogram method]. To do this, we

ok 4 check the number of MCS to satisfy the flatness condition

0 1000 2000 for the histogranH(ny,) or H(E); we state that the flatness
Mo condition is fulfilled if the histogrant (n,) or H(E) for all

FIG. 1. (@ (ng)n, /Ng and (b) InQ(ny) of the 3232 Ising ppssiblmb_orEis.equaI to or larger th:?m 80% of the average
model obtained by the cluster-flip flat histogram method. The dottedliStogramH. In Fig. 3, we show the size dependence of the
line in (a) denotesn,, /N . number of MCS to satisfy the flatness condition, which we
call the flatness timey,; hereafter, for both the cluster-flip
flat histogram method and the single-spin-flip flat histogram
method in logarithmic scale. The linear system sizese 4,

flip every cluster with the probability 1/2. And we repeat the

rocess. Since we do not know the exact for , we .
P I W W X n?{nqj)nb W 8, 12, 16, 20, 24, and 32. The average is taken over many

use the accumulated average {or,),,. The dynamics pro-  gamples The number of samples ranges from 20 for the larg-
posed here can be regarded as the flat histogram method fggt system to 1000 for the smallest. We see from Fig. 3 that
the bond number, which we call the cluster-flip flat histogramfor the single-spin-flip flat histogram method the flatness
method. The conventional flat histogram method for the entime increases more rapidly as the system size increases. The
ergy [7] will be referred to as the single-spin-flip flat histo- |east-squares fitting of the data gives

gram method hereafter. A(mp)nb converges to the exact

value, the histogranti(n,) becomes flat. We calculate the Intga~4.042)+1.791) InN

bond-number DOS by using Eq13), and then calculate
various quantities by Eq2), or Egs.(4) and (5).

Here, we have described the procedure for the multiple _
cluster update of the Swendsen-Wang typg but we can Nt~ 1.287) +2.461) InN
also employ the single cluster update of the Wolff ty#8]. o the single-spin-flip flat histogram method.

As another example, we simulate the 2D ten-state Potts
model on the square lattice. A strong first-order phase tran-
sition occurs in this model. We shogm,),, /Ng for the 32

First, we simulate the. XL Ising model on the square x 32 |attice by the solid line in Fig.(@); we given,/Ng by
lattice with the periodic boundary conditions by using theine dotied line. The number of MCS is&L.0°. The number
cluster-flip flat histogram method. We sha(wp>nb/NB asa  of potential moves(N(n,—ny+1))/Ng and (N(np—n,
function of n, for L=32 by the solid line in Fig. &); we
give n,/Ng by the dotted line. The number of Monte Carlo F _ T
sweeps(MCS) is 5x 10°. The difference between the solid 108 @ single-spin-flip

for the cluster flat histogram method, and

V. RESULTS

and dotted lines represents the number of potential moves I O cluster—fiip
(N(n,—ny,+1))/Ng, whereas the difference between the tiat
dotted line and the horizontal axis represeffi§n,—ny, 10°F

—1))/Ng. We should note tha(tnp>nb:o/NB= 1/2, which is

expected from Eq(12). The logarithm of the bond-number

DOS, In€)(n), obtained bynp),, is shown in Fig. 1b) as a

function of n,. The temperature dependence of the specific 10 102 N 10°

heat calculated using E) is shown in Fig. 2; the deviation

from the exact result obtained by Begli] is not visible in FIG. 3. Size dependence of the flatness time for the 2D Ising

this scale. model. The linear system sizésare 4, 8, 12, 16, 20, 24, and 32;
Let us compare the performance of the cluster-flip flatN=L2. The cluster-flip flat histogram method and the single-spin-

histogram method proposed in this paper with that of thelip flat histogram method are compared.
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10° ® single-spinflip
0 C cluster—flip
that | 1
10% 1
] 10°F
10' 100 10°
EZOOO' FIG. 6. Size dependence of the flatness time for the 2D ten-state
a Potts model. The linear system sideare 4, 8, 12, 16, 20, and 24;
£ 1000 N=L2. The cluster-flip flat histogram method and the single-spin-
flip flat histogram method are compared.
{b)
oF | , A (13), is independent of the dynamics. We may use the multi-
0 1000 2000 bondic ensemble methdd?2] or its improvemen{13], and

b

monitor (np)nb to compute()(n,), althoughQ(ny) is di-
FIG. 4. (& (np)n, /Ng and (b) In Q(n,) of the 32<32 ten-state  rectly used for the probability to update and renewed with
Potts model obtained by the cluster-flip flat histogram method. Thehe help of the histograni(n,), such asQ°%(ny)H(n,)
dotted line in(a) denotesn, /Ng. —Q""(ny). We compare the accuracy of the calculation for
several dynamics and the procedure to calcula¢a,). For

—1))/Ng are given in the same manner as in the case of théhat purpose, we study the errors of the specific heat for the
Ising model. It is to be noted thany), —o/Ng=1/10 for the ~ 2D Ising model. The energy DOS is exactly calculated by

ten-state Potts model. The logarithm of the bond—numbeﬁeaIe [2.1]' As already shown in Fig. 2, thg errors of our
DOS, InQ(n,), obtained byn.),, is shown in Fig. 4b). The calculation are very small; we treat the relative error, which
1 1 p nb . .

is defined as
temperature dependence of the energy obtained by4xés
given in Fig. 5. The latent heaQ is shown in the figure. Csimulatior{T)_Cexac{T)‘
The comparison of the flatness time for the 2D ten-state Potts Corcd T) ‘
model is shown in Fig. 6. The linear system siteare 4, 8, exac

12, 16, 20, and 24. The number of samples to take the avefs, the specific heaC. The relative errorse(T) of the 32
age ranges from 5 for the largest system to 1000 for the, 35 |5ing model in the case of the cluster-flip flat histogram
smallest. The flatness time of the single-spin-flip flat histo-jethod are shown in Fig.(®. The number of MCS is
gram method increases more rapidly with size than that 0% 000Ng. The average value of(T) in the range of 1.0
the cluster-flip flat histogram method, although it is not clear<_|_<4 0. which will be denoted WS as small as
whether the size dependence is linear or not in Iogarithmi(go&)z' ' ¥,

scale. It again shows the superiority of the cluster-flip flat™ n th.e case of the multibondic ensemble method. we can
histogram method over the single-spin-flip flat hiStogramcalculateQ(nb) either through the number of pc;tential

method. . . . .

In the calculations presented above, we have used tHgoves or by the direct calculation with the help of the_ his-
number of potential moves both for the dynamics and théogramH(nb). The er_rorSe(_T) of the 3232 Ising model in .
estimator ofQ(n,) or <np>nb_ However, our procedure to the case of the multibondic ense_mble meth(?d are plotted in

) Fig. 7(b). The number of MCS is 20000l5; we renew
calcula_lte the bond-number DQ$(nb) using the number of Q(n,) for the probability of graph update by every 10Q
potential moves, or more explicitly, usit,)n,, Ed.(11) OF  \ies. The solid line denotes the data for the calculation us-

ing the number of potential moves, and dotted lines denotes
Or— - - those for the direct calculation usity(n,). We see that the

K——-—— calculation ofQ2(n,) through the number of potential moves

gives much smaller errors. The average val(ig) is 0.0002
for the calculation using the number of potential moves,
Latent heat AQ whereas that for the direct calculation with(n,) is 0.043.
. We also show the results of the improved multibondic
=2} |_J ) )
0 T T 2

e(T)=

<E>g

method in Fig. 7c). The conditions are the same as those for

the multibondic method. The average vak(d) for the cal-
culation using the number of potential moves is 0.0002,
whereas that for the direct calculation with(n,) is 0.0087.
The calculation ofQ)(n,) through the number of potential
moves again gives much smaller errors compared to the di-

FIG. 5. Energy of the 2D ten-state Potts model ffor32 ob-
tained by the cluster-flip flat histogram method.
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TABLE |. Average relative error of the specific hedfT) for the
2D 32x 32 Ising model. We compare the data for several Monte
Carlo methods and the procedure to calcu@fg,), the calcula-
tion using the number of potential movésotential move and the
direct calculation withH(n,) (direc).

() Potential move Direct
Cluster-flip flat histogram 0.0002

Multibondic 0.0002 0.043
Improve multibondic 0.0002 0.0087

shown the efficiency of the BHR for the bond number in
calculating the bond-number DOS and other physical quan-
tities.

For the dynamics, the combination of the Wang-Landau
idea[8] and the cluster algorithms is useful in accelerating
the diffusion of the random walker, as was pointed out before
[13]. However, here we have made more emphasis on the use
of the BHR for the estimator of)(n,). The advantage of
using the BHR may be attributed to the fact that the number
of potential moves is a macroscopic quantity, which is the
same situation as the BHR for the enef@®,17]. Moreover,
the use of the improved estimator for calculating the number
of potential moves, Eq.13), gives much better statistics for
the calculation.

The number of potential moves for the enerdy(S,E
—E=*AE), has several possibilities fakE. On the con-

model; (a) the cluster-flip flat histogram methoth) the multibon- ga“é’ n thi ca’\Te of the nlirriber f?f pc;fentlal n:m;]es gor (tjhe
dic ensemble method, ar(d) the improved multibondic ensemble on nu_m _er_, (G*nb_’nb—_ ), the change of t _e on

method. The number of MCS is 20 006, . The solid line denotes NUMber is limited to one, which makes the calculation of the
the data obtained by the calculation using the number of potentid?@nd-number DOS through the number of potential moves

moves, and dotted line denotes those obtained by the direct calci?UCh simpler than that of the energy DOS. .
lation with H(ny). Recently, a cluster Monte Carlo algorithm to simulate the

Q-state Potts model for any regl(>0) was proposed by
Gliozzi [22]. It is interesting to apply the BHR to that
method. Since only the information on graph is used in that
Sonte Carlo algorithm, Eq(12) is useful for calculating

FIG. 7. Relative errors of the specific heat for thex®2 Ising

rect calculation withH(ny). It is interesting to notice that
e(T) take almost the same value for several methods if wi

follow the procedure to calculat(ny,) through(ny), . The (n.)

- p/np*
data ofe(T) for several methods are tabulated in Table | for |n bthis paper, we argued the BHR for the bond number.
convenience. We can extend the present idea to the relation including two

variables, for example, the bond number and the cluster
number. The extension to more general cases, such as the
VI. SUMMARY AND DISCUSSIONS loop algorithm of the quantum Monte Carlo simulation, may
To SummariZE, we have derived the rigorous BHR for theattract much attention, which will be studied in near future.
bond number, investigating the clustgraph representation
of the spin models. We have shown that the bond-number

DOS Q(ny,) can be calculated in terms ¢fi;), . We have We thank H. Otsuka, Y. Tomita, and J.-S. Wang for valu-
proposed a Monte Carlo dynamics based on the number @fble discussions. This work was supported by a Grant-in-Aid
potential moves for the bond number, which is regarded afor Scientific Research from the Japan Society for the Pro-
the flat histogram method for the bond number. We havemotion of Science.
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