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Broad histogram relation for the bond number and its applications

Chiaki Yamaguchi, Naoki Kawashima, and Yutaka Okabe
Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

~Received 27 May 2002; published 24 September 2002!

We discuss Monte Carlo methods based on the cluster~graph! representation for spin models. We derive a
rigorous broad histogram relation~BHR! for the bond number; a counterpart for the energy was derived by
Oliveira previously. A Monte Carlo dynamics based on the number of potential moves for the bond number is
proposed. We show the efficiency of the BHR for the bond number in calculating the density of states and other
physical quantities.
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I. INTRODUCTION

The development of new algorithms for the Monte Ca
simulation is important to overcome the problem of slo
dynamics. We may classify such attempts into two cate
ries. The first category is the extended ensemble method;
uses an ensemble different from the ordinary canonical
semble with a fixed temperature. The multicanonical meth
@1,2#, the simulated tempering@3#, the exchange Monte Carl
method@4#, the broad histogram method@5#, the flat histo-
gram method@6,7#, and the Wang-Landau algorithm@8# are
examples of the first category. The second category inclu
the cluster algorithm; one flips a large number of spins i
correlated cluster at a time instead of a single-spin fl
which helps the relaxation time decrease drastically.
amples of the second category are the Swendsen-Wang
rithm @9# and the Wolff algorithm@10#. Recently Tomita and
Okabe@11# proposed an effective cluster algorithm, which
called the probability-changing cluster algorithm, of tuni
the critical point automatically.

The combination of the approaches of two categories
challenging problem to explore an efficient algorithm. Jan
and Kappler@12# proposed a trial to combine the multica
nonical method and the cluster algorithm; their method
called the multibondic ensemble method. Quite recen
Yamaguchi and Kawashima@13# have improved the multi-
bondic ensemble method; they have also shown that
combination of the Wang-Landau algorithm and the i
proved multibondic ensemble method yields much better
tistics compared to the original multibondic ensemb
method by Janke and Kappler@12#.

One calculates the energy density of states~DOS! g(E) in
the multicanonical method@1,2# and the Wang-Landau
method@8#; the energy histogramH(E) is checked during
the Monte Carlo process. In contrast, the DOS for bond nu
ber nb , V(nb), is calculated in the multibondic ensemb
method@12# or the improved multibondic ensemble meth
by Yamaguchi and Kawashima@13#; the histogram for bond
number,H(nb), is checked in the Monte Carlo process.

In proposing the broad histogram method, Oliveiraet al.
@5# paid attention to the number of potential moves, or
number of the possible energy change,N(S,E→E8), for a
given stateS. The total number of moves is

(
DE

N~S,E→E1DE!5N
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for a single-spin-flip process, whereN is the number of
spins. The energy DOS is related to the number of poten
moves as

g~E! ^N~S,E→E8!&E5g~E8! ^N~S8,E8→E!&E8 ,
~1!

where^•••&E denotes the microcanonical average with fix
E. This relation is shown to be valid on general grounds@14#,
and hereafter we call Eq.~1! as the broad histogram relatio
~BHR! for the energy. One may use the number of poten
movesN(S,E→E8) for the probability of updating states
While the original dynamics@5# was criticized to be not en
tirely correct@6,15#, a refined dynamics is employed in th
flat histogram method@7#. Alternatively, one may employ
other dynamics which has no relation toN(S,E→E8), but
Eq. ~1! is used when calculating the energy DOS@16,17#. It
was stressed@16,17# that N(S,E→E8) is a macroscopic
quantity, which is the advantage of using the number of
tential moves. We do not have to care about the rela
number of visits for different energy levelsE. It is contrary
to the case of the multicanonical method@1,2# or the Wang-
Landau method@8#. The only crucial point is the uniformity
of visits within the same energy level@16#.

It is quite interesting to ask whether there is a relati
similar to the BHR, Eq.~1!, for the bond number. In this
paper, using the cluster~graph! representation, we derive th
BHR for the bond number. We propose a dynamics based
the number of potential moves for the bond number. Us
the DOS for the bond number thus obtained, we calculate
specific heat for model spin systems. We also employ ot
dynamics, that is, the multibondic ensemble method@12# and
its improvement@13#, and calculate the bond-number DO
based on the BHR for the bond number. Comparing the
ficiency of several methods, we show that the calculation
the bond-number DOS through the BHR gives much be
statistics compared to the direct calculation of the DOS.

The rest of the paper is organized as follows. In Sec.
we briefly review the cluster~graph! representation for the
Q-state Potts model. In Sec. III, we derive the BHR for t
bond number. A dynamics based on the number of poten
moves for the bond number is discussed in Sec. IV. In Sec
calculating the accuracy of the specific heat for the tw
dimensional~2D! Ising model, we compare the efficiency o
several methods. The summary and discussions are give
Sec. VI.
©2002 The American Physical Society04-1
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II. CLUSTER FORMALISM

We briefly review the cluster~graph! formalism for the
Q-state Potts model. We are concerned with the Hamilton

H52J(
^ i , j &

ds i ,s j
, s i5$1, . . . ,Q%,

whereJ is the exchange coupling constant and the sum
tion is taken over the nearest-neighbor pairs^ i , j &. From now
on, we represent the energy in units ofJ, and the Boltzmann
constant is set to be 1.

The partition function for a given temperatureT is ex-
pressed as

Z~T![(
S

W0~S!5(
E

g~E!W0„E~S!,T…

with the Boltzmann weight of stateS having the energyE,

W0~S!5W0„E~S!,T…5e2E(S)/T,

and the energy DOS,

g~E![ (
$SuE(S)5E%

1.

With the framework of the dual algorithm@18,19#, the
partition function is also expressed in the double summa
over stateS and graphG as

Z~T!5(
S,G

V0~G! D~S,G!,

whereD(S,G) is a function that takes the value one whenS
is compatible toG and takes the value zero otherwise.
graph consists of a set of bonds. The weight for graphG,
V0(G), is defined as

V0~G!5V0„nb~G!,T…5~e1/T21!nb(G)

for the Q-state Potts model, wherenb(G) is the number of
‘‘active’’ bonds in G. This is nothing but the Fortuin
Kasteleyn representation@20# for the Q-state Potts model
We say a pair (i , j ) is satisfied ifs i5s j , and unsatisfied
otherwise. Satisfied pairs become active with a probab
p512e21/T for given T.

By taking the summation overS with G with fixing the
number of bondsnb , the expression for the partition functio
becomes

Z~T!5 (
nb50

NB

V~nb!V0~nb ,T!,

whereNB is the total number of nearest-neighbor pairs in
whole system. Here,V(nb) is the DOS for the bond numbe
defined as the number of consistent combinations of gra
and states such that the graph consists ofnb bonds,

V~nb![ (
$Gunb(G)5nb%

(
S

D~S,G!.
03670
n

a-

n

y

e

hs

Then, the canonical average of a quantityA is calculated
by

^A&T5

(
nb

^A&nb
V~nb!V0~nb ,T!

Z~T!
, ~2!

where ^A&nb
is the microcanonical average with the fixe

bond numbernb for the quantityA defined as

^A&nb
[

(
$Gunb(G)5nb%

(
S

A~S,G!D~S,G!

V~nb!
. ~3!

Thus, if we obtainV(nb) and^•••&nb
during the simulation

process, we can calculate the canonical average of any q
tity at any temperature.

We should note that for the calculation of the energyE, it
is convenient to use the relation

^E&T5T2
d

dT
ln Z~T!52

e1/T

e1/T21
^nb&T . ~4!

Similarly, the specific heat per one siteC is given by

CNT252
e1/T

~e1/T21!2
^nb&T1S e1/T

e1/T21
D 2

~^nb
2&T2^nb&T

2!.

~5!

The above equations~4! and ~5! were derived by Janke an
Kappler @12#.

III. BHR FOR THE BOND NUMBER

The relation between the energy DOS and the numbe
potential moves for energy, the BHR for the energy, w
rigorously derived by Oliveira@14#. Here we follow a
method similar to that used by Oliveira to derive the BH
for the bond number. Instead of using the relation betwe
states, we consider the relation between graphs.

The number of potential moves from the graph with t
bond numbernb to the graph withnb11, N(S,G,nb→nb
11), for fixed S is equal to that of the number of potenti
moves from the graph withnb11 to that with nb ,
N(S,G8,nb11→nb). That is, the following relation is satis
fied:

(
$Gunb(G)5nb%

N~S,G,nb→nb11!

5 (
$G8unb(G8)5nb11%

N~S,G8,nb11→nb!. ~6!

Taking a summation over statesSand using the definition of
the microcanonical average with the fixed bond numbernb ,
Eq. ~3!, we rewrite Eq.~6! as
4-2
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V~nb!^N~G,nb→nb11!&nb

5V~nb11! ^N~G8,nb11→nb!&nb11 . ~7!

This is the BHR for the bond number. It should be noted t
N(G,nb→nb11) is a possible number of bonds to add, a
related to the number of satisfied pairs for the given statS,

np~S!5(
^ i , j &

ds i (S),s j (S) ,

by

N~G,nb→nb11!5np~S!2nb .

With use of the microcanonical average with fixed bo
number fornp , we have the relation

^N~G,nb→nb11!&nb
5^np&nb

2nb . ~8!

On the other hand, the possible number of bonds to de
N(G8,nb11→nb), is simply given bynb11, that is,

^N~G8,nb11→nb!&nb115nb11. ~9!

From the BHR for the bond number, Eq.~7!, we have

V~nb!

V~0!
5 )

l 50

nb21
V~ l 11!

V~ l !
5 )

l 50

nb21 ^N~G,l→ l 11!&nb5 l

^N~G,l 11→ l !&nb5 l 11
.

~10!

Then, substituting Eqs.~8! and ~9! into Eq. ~10!, we obtain
the bond-number DOS,V(nb), as

ln V~nb!5 ln V~0!1 (
l 50

nb21

lnS ^np&nb5 l2 l

l 11
D . ~11!

When calculating the bond-number DOS from the BHR
the bond number, we only need the information on^np&nb

,

the microcanonical average with fixednb of the number of
satisfied pairsnp . It is much simpler than the case of th
BHR formulation for the energy DOS.

Moreover, in the computation ofnp , we can use an im-
proved estimator. If a pair of sites (i , j ) belong to the differ-
ent cluster, this pair is satisfied with a probability of 1/Q. If
a pair of sites belong to the same cluster, this pair is alw
satisfied. Then, we can employ an improved estimatorñp as

ñp~G!5S 12
1

QD (
^ i , j &

dci (G),cj (G)1
NB

Q
, ~12!

whereci(G) represent a cluster that a sitei belongs to. Only
the information on graph is needed. By definition,^ñp&nb

5^np&nb
. We employ the improved estimator in the who

calculation below. Inserting Eq.~12! into Eq. ~11!, we have
03670
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V~nb!

QN
5

1

nb! )
l 50

nb21 F S 12
1

QD ^dci (G),cj (G)&nb5 l1
NB

Q
2 l G .

~13!

Here we have used the relation

V~0!5Z~T→`!5QN.

It is interesting to check Eq.~13! for a special case. TheQ
→1 limit of the Q-state Potts model is the bond percolati
problem. If we substituteQ51 into Eq.~13!, we obtain

V~nb!5S NB

nb
D ,

which is the expected relation for the bond percolation pr
lem.

IV. FLAT HISTOGRAM METHOD FOR THE BOND
NUMBER

Let us consider the update process for the Monte Ca
simulation. In the multibondic ensemble method, a graph
updated by adding or deleting a bond for a satisfied pair
sites@12#. The histogramH(nb) becomes flat if we use the
following rule. If there is a bond already on the chosen p
we delete it with a probability

P~nb→nb21!5
V~nb!

V~nb21!1V~nb!
, ~14!

On the other hand, if there is no bond and if the pair
satisfied, we add a bond with a probability

P~nb→nb11!5
V~nb!

V~nb11!1V~nb!
. ~15!

Since the exact form of the bond-number DOSV(nb) is not
known a priori, we renewV(nb) iteratively in the Monte
Carlo process by several ways@12,13#.

We may use the number of potential moves for the bo
number,̂ N(G,•••)&nb

, for the probability of update. Insert
ing Eqs.~7!, ~8!, and~9! into Eqs.~14! and~15!, we get the
probability to delete a bond,

P~nb→nb21!5
^np&nb21112nb

^np&nb
2111

, ~16!

and the probability to add a bond,

P~nb→nb11!5
nb11

^np&nb
11

, ~17!

respectively.
The actual Monte Carlo procedure is as follows. We st

from some state~spin configuration! S, and an arbitrary
graphG consistent with it. We add or delete a bond of sat
fied pairs with the probability~16! or ~17!. After making
such a process as many as the number of total pairs,NB , we
4-3
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flip every cluster with the probability 1/2. And we repeat t
process. Since we do not know the exact form of^np&nb

, we

use the accumulated average for^np&nb
. The dynamics pro-

posed here can be regarded as the flat histogram metho
the bond number, which we call the cluster-flip flat histogra
method. The conventional flat histogram method for the
ergy @7# will be referred to as the single-spin-flip flat histo
gram method hereafter. Aŝnp&nb

converges to the exac

value, the histogramH(nb) becomes flat. We calculate th
bond-number DOS by using Eq.~13!, and then calculate
various quantities by Eq.~2!, or Eqs.~4! and ~5!.

Here, we have described the procedure for the mult
cluster update of the Swendsen-Wang type@9#, but we can
also employ the single cluster update of the Wolff type@10#.

V. RESULTS

First, we simulate theL3L Ising model on the squar
lattice with the periodic boundary conditions by using t
cluster-flip flat histogram method. We show^np&nb

/NB as a

function of nb for L532 by the solid line in Fig. 1~a!; we
give nb /NB by the dotted line. The number of Monte Car
sweeps~MCS! is 53107. The difference between the soli
and dotted lines represents the number of potential mo
^N(nb→nb11)&/NB , whereas the difference between t
dotted line and the horizontal axis represents^N(nb→nb
21)&/NB . We should note that̂np&nb50 /NB51/2, which is
expected from Eq.~12!. The logarithm of the bond-numbe
DOS, lnV(nb), obtained bŷ np&nb

is shown in Fig. 1~b! as a

function of nb . The temperature dependence of the spec
heat calculated using Eq.~5! is shown in Fig. 2; the deviation
from the exact result obtained by Beale@21# is not visible in
this scale.

Let us compare the performance of the cluster-flip
histogram method proposed in this paper with that of

FIG. 1. ~a! ^np&nb
/NB and ~b! ln V(nb) of the 32332 Ising

model obtained by the cluster-flip flat histogram method. The do
line in ~a! denotesnb /NB .
03670
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single-spin-flip flat histogram method@7#. To do this, we
check the number of MCS to satisfy the flatness condit
for the histogramH(nb) or H(E); we state that the flatnes
condition is fulfilled if the histogramH(nb) or H(E) for all
possiblenb or E is equal to or larger than 80% of the avera
histogramH̄. In Fig. 3, we show the size dependence of t
number of MCS to satisfy the flatness condition, which w
call the flatness timetflat hereafter, for both the cluster-flip
flat histogram method and the single-spin-flip flat histogr
method in logarithmic scale. The linear system sizesL are 4,
8, 12, 16, 20, 24, and 32. The average is taken over m
samples. The number of samples ranges from 20 for the l
est system to 1000 for the smallest. We see from Fig. 3
for the single-spin-flip flat histogram method the flatne
time increases more rapidly as the system size increases
least-squares fitting of the data gives

ln tflat;4.04~2!11.75~1! ln N

for the cluster flat histogram method, and

ln tflat;1.28~7!12.46~1! ln N

for the single-spin-flip flat histogram method.
As another example, we simulate the 2D ten-state P

model on the square lattice. A strong first-order phase tr
sition occurs in this model. We shoŵnp&nb

/NB for the 32

332 lattice by the solid line in Fig. 4~a!; we givenb/NB by
the dotted line. The number of MCS is 53107. The number
of potential moves^N(nb→nb11)&/NB and ^N(nb→nb

d

FIG. 2. Specific heat per site of the 2D Ising model forL532
obtained by the cluster-flip flat histogram method.

FIG. 3. Size dependence of the flatness time for the 2D Is
model. The linear system sizesL are 4, 8, 12, 16, 20, 24, and 32
N5L2. The cluster-flip flat histogram method and the single-sp
flip flat histogram method are compared.
4-4
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BROAD HISTOGRAM RELATION FOR THE BOND . . . PHYSICAL REVIEW E 66, 036704 ~2002!
21)&/NB are given in the same manner as in the case of
Ising model. It is to be noted that^np&nb50 /NB51/10 for the
ten-state Potts model. The logarithm of the bond-num
DOS, lnV(nb), obtained bŷ np&nb

is shown in Fig. 4~b!. The
temperature dependence of the energy obtained by Eq.~4! is
given in Fig. 5. The latent heatDQ is shown in the figure.
The comparison of the flatness time for the 2D ten-state P
model is shown in Fig. 6. The linear system sizesL are 4, 8,
12, 16, 20, and 24. The number of samples to take the a
age ranges from 5 for the largest system to 1000 for
smallest. The flatness time of the single-spin-flip flat his
gram method increases more rapidly with size than tha
the cluster-flip flat histogram method, although it is not cle
whether the size dependence is linear or not in logarith
scale. It again shows the superiority of the cluster-flip fl
histogram method over the single-spin-flip flat histogra
method.

In the calculations presented above, we have used
number of potential moves both for the dynamics and
estimator ofV(nb) or ^np&nb

. However, our procedure to

calculate the bond-number DOSV(nb) using the number of
potential moves, or more explicitly, using^np&nb

, Eq. ~11! or

FIG. 4. ~a! ^np&nb
/NB and ~b! ln V(nb) of the 32332 ten-state

Potts model obtained by the cluster-flip flat histogram method.
dotted line in~a! denotesnb /NB .

FIG. 5. Energy of the 2D ten-state Potts model forL532 ob-
tained by the cluster-flip flat histogram method.
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~13!, is independent of the dynamics. We may use the mu
bondic ensemble method@12# or its improvement@13#, and
monitor ^np&nb

to computeV(nb), althoughV(nb) is di-
rectly used for the probability to update and renewed w
the help of the histogramH(nb), such asVold(nb)H(nb)
→Vnew(nb). We compare the accuracy of the calculation f
several dynamics and the procedure to calculateV(nb). For
that purpose, we study the errors of the specific heat for
2D Ising model. The energy DOS is exactly calculated
Beale @21#. As already shown in Fig. 2, the errors of ou
calculation are very small; we treat the relative error, wh
is defined as

e~T![UCsimulation~T!2Cexact~T!

Cexact~T!
U

for the specific heatC. The relative errorse(T) of the 32
332 Ising model in the case of the cluster-flip flat histogra
method are shown in Fig. 7~a!. The number of MCS is
20 000NB . The average value ofe(T) in the range of 1.0
<T<4.0, which will be denoted bye(T)̄ , is as small as
0.0002.

In the case of the multibondic ensemble method, we
calculate V(nb) either through the number of potentia
moves or by the direct calculation with the help of the h
togramH(nb). The errorse(T) of the 32332 Ising model in
the case of the multibondic ensemble method are plotte
Fig. 7~b!. The number of MCS is 20 000NB ; we renew
V(nb) for the probability of graph update by every 100NB
MCS. The solid line denotes the data for the calculation
ing the number of potential moves, and dotted lines deno
those for the direct calculation usingH(nb). We see that the
calculation ofV(nb) through the number of potential move
gives much smaller errors. The average valuee(T)̄ is 0.0002
for the calculation using the number of potential move
whereas that for the direct calculation withH(nb) is 0.043.
We also show the results of the improved multibond
method in Fig. 7~c!. The conditions are the same as those
the multibondic method. The average valuee(T)̄ for the cal-
culation using the number of potential moves is 0.00
whereas that for the direct calculation withH(nb) is 0.0087.
The calculation ofV(nb) through the number of potentia
moves again gives much smaller errors compared to the

e

FIG. 6. Size dependence of the flatness time for the 2D ten-s
Potts model. The linear system sizesL are 4, 8, 12, 16, 20, and 24
N5L2. The cluster-flip flat histogram method and the single-sp
flip flat histogram method are compared.
4-5
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CHIAKI YAMAGUCHI, NAOKI KAWASHIMA, AND YUTAKA OKABE PHYSICAL REVIEW E 66, 036704 ~2002!
rect calculation withH(nb). It is interesting to notice tha
e(T)̄ take almost the same value for several methods if
follow the procedure to calculateV(nb) through^np&nb

. The

data ofe(T)̄ for several methods are tabulated in Table I
convenience.

VI. SUMMARY AND DISCUSSIONS

To summarize, we have derived the rigorous BHR for
bond number, investigating the cluster~graph! representation
of the spin models. We have shown that the bond-num
DOS V(nb) can be calculated in terms of^np&nb

. We have
proposed a Monte Carlo dynamics based on the numbe
potential moves for the bond number, which is regarded
the flat histogram method for the bond number. We ha

FIG. 7. Relative errors of the specific heat for the 32332 Ising
model; ~a! the cluster-flip flat histogram method,~b! the multibon-
dic ensemble method, and~c! the improved multibondic ensembl
method. The number of MCS is 20 000NB . The solid line denotes
the data obtained by the calculation using the number of pote
moves, and dotted line denotes those obtained by the direct c
lation with H(nb).
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shown the efficiency of the BHR for the bond number
calculating the bond-number DOS and other physical qu
tities.

For the dynamics, the combination of the Wang-Land
idea @8# and the cluster algorithms is useful in accelerati
the diffusion of the random walker, as was pointed out bef
@13#. However, here we have made more emphasis on the
of the BHR for the estimator ofV(nb). The advantage of
using the BHR may be attributed to the fact that the num
of potential moves is a macroscopic quantity, which is t
same situation as the BHR for the energy@16,17#. Moreover,
the use of the improved estimator for calculating the num
of potential moves, Eq.~13!, gives much better statistics fo
the calculation.

The number of potential moves for the energy,N(S,E
→E6DE), has several possibilities forDE. On the con-
trary, in the case of the number of potential moves for
bond number,N(G,nb→nb61), the change of the bond
number is limited to one, which makes the calculation of t
bond-number DOS through the number of potential mo
much simpler than that of the energy DOS.

Recently, a cluster Monte Carlo algorithm to simulate t
Q-state Potts model for any realQ(.0) was proposed by
Gliozzi @22#. It is interesting to apply the BHR to tha
method. Since only the information on graph is used in t
Monte Carlo algorithm, Eq.~12! is useful for calculating
^np&nb

.
In this paper, we argued the BHR for the bond numb

We can extend the present idea to the relation including
variables, for example, the bond number and the clu
number. The extension to more general cases, such as
loop algorithm of the quantum Monte Carlo simulation, m
attract much attention, which will be studied in near futur
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TABLE I. Average relative error of the specific heate(T)̄ for the
2D 32332 Ising model. We compare the data for several Mo
Carlo methods and the procedure to calculateV(nb), the calcula-
tion using the number of potential moves~potential move! and the
direct calculation withH(nb) ~direct!.

e(T)̄ Potential move Direct

Cluster-flip flat histogram 0.0002
Multibondic 0.0002 0.043
Improve multibondic 0.0002 0.0087
raz.
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